Free download. Book file PDF easily for everyone and every device. You can download and read online Physical and Chemical Equilibrium for Chemical Engineers, Second Edition file PDF Book only if you are registered here. And also you can download or read online all Book PDF file that related with Physical and Chemical Equilibrium for Chemical Engineers, Second Edition book. Happy reading Physical and Chemical Equilibrium for Chemical Engineers, Second Edition Bookeveryone. Download file Free Book PDF Physical and Chemical Equilibrium for Chemical Engineers, Second Edition at Complete PDF Library. This Book have some digital formats such us :paperbook, ebook, kindle, epub, fb2 and another formats. Here is The CompletePDF Book Library. It's free to register here to get Book file PDF Physical and Chemical Equilibrium for Chemical Engineers, Second Edition Pocket Guide.
Guidelines for auditing process safety management systems

Authors Authors and affiliations I. Economou M. Donohue L. Subscripts i Component i j Chemical reaction j. This is a preview of subscription content, log in to check access. Smith and H. McGraw-Hill, New York, Google Scholar.

Denbigh, The Principles of Chemical Equilibrium , 4th ed. Cambridge University Press, London, Smith and R. Heidemann and J. Prausnitz, Proc. Ikonomou and M. Economou, G. Ikonomou, P. Views Total views. Actions Shares. Embeds 0 No embeds.

Passar bra ihop

No notes for slide. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Sections or of the United States Copyright Act without the permission of the copyright owner is unlawful. Bibliography: p. Includes indexes. Chemical reaction, Rate of. Chemical reactors—Design and construction. H54 Board of Advisors, Engineering A.

Stuart Hunter Princeton University T. William Lambe R. Preface One feature that distinguishes the education of the chemical engineer from that of other engineers is an exposure to the basic concepts of chemical reaction kinetics and chemical reactor design. This textbook provides a judicious introductory level overview of these subjects. Emphasis is placed on the aspects of chemical kinetics and material and energy balances that form the foundation for the practice of reactor design.

Gas Equilibrium Constants: Kc And Kp

The text is designed as a teaching instrument. It can be used to introduce the novice to chemical kinetics and reactor design and to guide him until he understands the fundamentals well enough to read both articles in the literature and more advanced texts with understanding. Because the chemical engineer who practices reactor design must have more than a nodding acquaintance with the chemical aspects of reaction kinetics, a significant portion of this textbook is devoted to this subject.

The modern chemical process industry, which has played a significant role in the development of our technology-based society, has evolved because the engineer has been able to commercialize the laboratory discoveries of the scientist. To carry out the necessary scale-up procedures safely and economically, the reactor designer must have a sound knowledge of the chemistry involved. Modern introductory courses in physical chemistry usually do not provide the breadth or the in-depth treatment of reaction kinetics that is required by the chemical engineer who is faced with a reactor design problem.

More advanced courses in kinetics that are taught by physical chemists naturally reflect the research interests of the individuals involved; they do not stress the transmittal of that information which is most useful to individuals engaged in the practice of reactor design. Seldom is significant attention paid to the subject of heterogeneous catalysis and to the key role that catalytic processes play in the industrial world. Chapters 3 to 7 treat the aspects of chemical kinetics that are important to the education of a well-read chemical engineer. To stress further the chemical problems involved and to provide links to the real world, I have attempted where possible to use actual chemical reactions and kinetic parameters in the many illustrative examples and problems.

However, to retain as much generality as possible, the presentations of basic concepts and the derivations of fundamental equations are couched in terms of the anonymous chemical species A, B, C, U, V, etc. Where it is appropriate, the specific chemical reactions used in the illustrations are reformulated in these terms to indicate the manner in which the generalized relations are employed. Chapters 8 to 13 provide an introduction to chemical reactor design.

We start with the concept of idealized reactors with specified mixing characteristics operating isothermally and then introduce complications such as the use of combinations of reactors, implications of multiple reactions, temperature and energy effects, residence time effects, and heat and mass transfer limitations that ari often involved when heterogeneous catalysts are employed.

Emphasis is placed on the fact that chemical reactor design represents a straightforward application of the bread and butter tools of the chemical engineer—the material balance and the energy balance. The vii 5. Although the material and energy balance equations are not coupled when no temperature changes occur in the reactor, the design engineer still must solve the energy balance equation to ensure that sufficient capacity for energy transfer is provided so that the reactor will indeed operate isothermally. The text stresses that the design process merely involves an extension of concepts learned previously.

The application of these concepts in the design process involves equations that differ somewhat in mathematical form from the algebraic equations normally encountered in the introductory material and energy balance course, but the underlying principles are unchanged. The illustrations in- volved in the reactor design portion of the text are again based where possible on real chemical examples and actual kinetic data.

The illustrative problems in Chapter 13 indicate the facility with which the basic concepts may be rephrased or applied in computer language, but this material is presented only after the student has been thoroughly exposed to the concepts involved and has learned to use them in attacking reactor design problems. I believe that the subject of computer-aided design should be deferred to graduate courses in reactor design and to more advanced texts. The notes that form the basis for the bulk of this textbook have been used for several years in the undergraduate course in chemical kinetics and reactor design at the University of Wisconsin.

In this course, emphasis is placed on Chapters 3 to 6 and 8 to 12, omitting detailed class discussions of many of the mathematical deriva- tions. My colleagues and I stress the necessity for developing a "seat of the pants" feeling for the phenomena involved as well as an ability to analyze quantitative problems in terms of design framework developed in the text. In the latter course emphasis is placed on developing the student's ability to analyze critically actual kinetic data obtained from the literature in order to acquaint him with many of the traps into which the unwary may fall.

Some of the problems in Chapter 12 and the illustrative case studies in Chapter 1'3 have evolved from this course. Most of the illustrative examples and problems in the text are based on actual data from the kinetics literature. However, in many cases, rate constants, heats of reaction, activation energies, and other parameters have been converted to SI units from various other systems.

To be able to utilize the vast literature of kinetics for reactor design purposes, one must develop a facility for making appropriate trans- formations of parameters from one system of urtits to another. Consequently, I have chosen not to employ SI units exclusively in this text. Preface ix Like other authors of textbooks for undergraduates, I owe major debts to the instructors who first introduced me to this subject matter and to the authors and researchers whose publications have contributed to my understanding of the subject.

Get PDF Physical and Chemical Equilibrium for Chemical Engineers

As a student, I benefited from instruction by R. Reid, C. Satterfield, and I. Amdur and from exposure to the texts of Walas, Frost and Pearson, and Benson. Some of the material in Chapter 6 has been adapted with permission from the course notes of Professor C.

  • Kundrecensioner?
  • Definition of \(K_c\) and \(K_p\).
  • Justine, Philosophy in the Bedroom, and Other Writings!

Satterfield of MIT, whose direct and indirect influence on my thinking is further evident in some of the data interpretation problems in Chapters 6 and As an instructor I have found the texts by Levenspiel and Smith to be particularly useful at the undergraduate level; the books by Denbigh, Laidler, Hinshelwood, Aris, and Kramers and Westerterp have also helped to shape my views of chemical kinetics and reactor design. I have tried to use the best ideas of these individuals and the approaches that I have found particularly useful in the classroom in the synthesis of this textbook.

A major attraction of this subject is that there are many alternative ways of viewing the subject.

Physical and Chemical Equilibrium for Chemical Engineers (Electronic book text, 2nd)

Without an exposure to several viewpoints, one cannot begin to grasp the subject in its entirety. Only after such exposure, bombardment by the probing questions of one's students, and much contemplation can one begin to synthesize an individual philosophy of kinetics. To the humanist it may seem a misnomer to talk in terms of a philosophical approach to kinetics, but to the individuals who have taken kinetics courses at different schools or even in different departments and to the individuals who have read widely in the kinetics literature, it is evident that several such approaches do exist and that specialists in the area do have individual philosophies that characterize their ap- proach to the subject.

Guidelines for process equipment reliability data with data tables

The stimulating environment provided by the students and staff of the Chemical Engineering Department at the University of Wisconsin has provided much of the necessary encouragement and motivation for writing this textbook. The Department has long been a fertile environment for research and textbook writing in the area of chemical kinetics and reactor design.

The text by O. Hougen and K. Watson represents a classic pioneering effort to establish a rational approach to the subject from the viewpoint of the chemical engineer. Through the years these individuals and several members of our current staff have contributed significantly to the evolu- tion of the subject. I am indebted to my colleagues, W.

Stewart, S.

Langer, C. Watson, R. Grieger, S. Cooper, and T. Chapman, who have used earlier versions of this textbook as class notes or commented thereon, to my benefit. All errors are, of course, my own responsibility. I am grateful to the graduate students who have served as my teaching assistants and who have brought to my attention various ambiguities in the text or problem statements. These include J. Welch, A. Yu, R. Krug, E. Guertin, A. Kozinski, G. Estes, J. Coca, R. Safford, R. Harrison, J. Yurchak, G. Schrader, A.

Parker, T. Kumar, and A. I also thank the students on whom I have tried out my ideas. Their response to the subject matter has provided much of the motivation for this textbook. Since drafts of this text were used as course notes, the secretarial staff of the department, which includes D. Peterson, C. Sherven, M. Sullivan, and M. Carr, 7. Preface deserves my warmest thanks for typing this material. I am also very appreciative of my wife's efforts in typing the final draft of this manuscript and in correcting the galley proofs.

Vivian Kehane, Jacqueline Lachmann, and Peter Klein of Wiley were particularly helpful in transforming my manuscript into this text. My wife and children have at times been neglected during the preparation of this textbook; for their cooperation and inspiration I am particularly grateful. HILL, Jr. Supplementary References Since this is an introductory text, all topics of potential interest cannot be treated to the depth that the reader may require. Consequently, a number of useful supplementary references are listed below. References Pertinent to the Chemical Aspects of Kinetics 1.

Amdur and G. Frost and R. Gardiner, Jr. Cooper and G. Denbigh and J. Kramers and K. No life of any sort would exist. Even if we exempt the fundamental reactions involved in life processes from our proscription on chemical reactions, our lives would be extremely different from what they are today. There would be no fire for warmth and cooking, no iron and steel with which to fashion even the crudest implements, no synthetic fibers for clothing, and no engines to power our vehicles. One feature that distinguishes the chemical engineer from other types of engineers is the ability to analyze systems in which chemical reactions are occurring and to apply the results of his analysis in a manner that benefits society.

Consequently, chemical engineers must be well acquainted with the fundamentals of chemical kinetics and the manner in which they are applied in chemical reactor design. This text- book provides a systematic introduction to these subjects.

Alphabetical Index

Chemical kinetics deals with quantitative studies of the rates at which chemical processes occur, the factors on which these rates depend, and the molecular acts involved in reaction processes. A description of a reaction in terms of its constituent molecular acts is known as the mechanismof the reaction. Physical and organic chemists are primarily interested in chemical kinetics for the light that it sheds on molecular properties. From interpretations of macroscopic kinetic data in terms of molecular mechanisms, they can gain insight into the nature of reacting systems, the processes by which chemical bonds are made and broken, and the structure of the resultant product.

Although chemical engineers find the concept of a reaction mechanism useful in the corre- lation, interpolation, and extrapolation of rate data, they are more concerned with applications of chemical kinetics in the development of profitable manufacturing processes. Chemical engineers have traditionally ap- proached kinetics studies with the goal of describing the behavior of reacting systems in terms of macroscopically observable quantities such as temperature, pressure, composition, and Reynolds number. This empirical approach has been very fruitful in that it has permitted chemical reactor technology to develop to a point that far surpasses the development of theoretical work in chemical kinetics.

The dynamic viewpoint of chemical kinetics may be contrasted with the essentially static viewpoint of thermodynamics. A kinetic system is a system in unidirectional movement toward a condition of thermodynamic equilibrium. The chemical composition of the system changes continuously with time. A system that is in thermodynamic equilibrium, on the other hand, undergoes no net change with time.

The thermo- dynamicist is interested only in the initial and final states of the system and is not concerned with the time required for the transition or the molecular processes involved therein; the chem- ical kineticist is concerned primarily with these issues. In principle one can treat the thermodynamics of chemical reactions on a kinetic basis by recognizing that the equilibrium condition corresponds to the case where the rates of the forward and reverse reactions are identical.

In this sense kinetics is the more fundamental science. Nonetheless, thermodynamics provides much vital information to the kineticist and to the reactor designer. In particular, the first step in determining the economic feasibility of producing a given material from a given reac- tant feed stock should be the determination of the product yield at equilibrium at the condi- tions ofthe reactor outlet.

Since this composition represents the goal toward which the kinetic Stoichiometric Coefficients and Reaction Progress Variables process is moving, it places a maximum limit on the product yield that may be obtained. Chem- ical engineers must also use thermodynamics to determine heat transfer requirements for pro- posed reactor configurations. We define generalized stoichiometric coefficients vt for the above reaction by rewriting it in the following manner. The coefficients of species that are neither produced nor consumed by the indicated reaction are taken to be zero.

Equation 1. One may further generalize equation 1. There are, of course, many equivalent ways of writing the stoichiometric equation for a reac- tion. Since the reaction stoich- iometry can be expressed in various ways, one must always write down a stoichiometric equa- tion for the reaction under study during the initial stages of the analysis and base subsequent calculations on this reference equation. If a consistent set of stoichiometric coefficients is used throughout the calculations, the results can be readily understood and utilized by other workers in the field. We will find it convenient to use the concept of the extent or degree of advancement of reaction.

This concept has its origins in the thermodynamic literature, dating back to the work of de Donder 1. Initially there are ni0 moles of constituent At present in the system. At some later time there are nt moles of species At present. It is a useful measure of the progress of the reaction because it is not tied to any particular species At. This point is discussed in Section 3. The major drawback of the concept is that the extent is an extensive variable and consequently is proportional to the mass of the system being investigated. In general, the initial mole numbers of the reactants do not constitute simple stoichiometric ratios, and the number of moles of product that may be formed is limited by the amount of one of the reactants present in the system.

Consequently, the treatment used in subsequent chapters will define fractional con- versions in terms of the limiting reactant. One can relate the extent of reaction to the fraction conversion by solving equations 1. We will classify these reactions as irreversible. When the extent of reaction at D e Donder, Th. Whitney, Kala Pattar, and Mt. Du kanske gillar. Lifespan David Sinclair Inbunden. Growth Vaclav Smil Inbunden. Inbunden Engelska, Spara som favorit.